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Abstract

This paper studies optimal tax policy when households invest in risky human cap-

ital and the government provides public services to households regardless of their

economic status (”risk-free” public services). Specifically, we consider a tractable

incomplete-market model with risk-less physical capital and risky human capital in

which the government chooses a system of flat-rate taxes/subsidies as well as the

level of spending on public services optimally. We use the tractability of the model

to show theoretically that it is always socially optimal to subsidize investment in

the risky asset, human capital. We also provide a quantitative analysis based on a

version of the model calibrated to US data. Our main quantitative result is that

implementing the optimal policy generates large growth and welfare gains if the

labor-leisure choice is endogenous.
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1 Introduction

This paper is motivated by two empirical observations. First, there is strong evidence

that human capital investment is risky, but complete insurance against this risk is lack-

ing. More precisely, a significant fraction of labor income is the return to human capital

investment, and a voluminous empirical literature has shown that individual households

face large and highly persistent labor income shocks that have strong effects on individ-

ual consumption.1 Second, in most developed countries, governments spend a significant

amount of total output and a large fraction of this spending is used to provide public

services to all households regardless of their economic status. In this paper, we show that

both observations taken together imply that, in equilibrium, households always invest

less in risky human capital than socially optimal. In other words, a subsidy to human

capital investment financed through an incentive-neutral tax will improve social welfare.

Moreover, we calibrate the model to US data and show that the growth and welfare

gains from implementing the optimal policy are large when the labor-leisure choice is

endogenous.

There is a straightforward economic intuition for the sub-optimality of the equilibrium

allocation without taxes and subsidies. In addition to the consumption-saving decision,

households have to allocate their investment between a low-return, risk-free asset (phys-

ical capital in our model) and a high return, risky asset (human capital in our model),

which in turn determines the mean and volatility of individual consumption growth.

When making their portfolio decisions, individual households take aggregate variables,

and in particular the level of output and public consumption services, as given. Thus,

they do not take into account that more investment in the high-return asset, human

capital, will increase aggregate output and, as shown in this paper, the optimal level of

publicly provided consumption services. If private consumption and public consumption

had the same degree of riskiness, then this would not pose a problem for the optimal-

ity of the market outcome. However, if public consumption is less risky than private

consumption, then in equilibrium the private risk-return trade-off differs from the social

risk-return trade-off, and it becomes socially optimal to provide additional incentives for
1For the estimation of income risk, see, for example, MaCurdy (1982), Carroll and Samwick (1997),

Meghir and Pistaferri (2004), and Storesletten, Telmer, and Yaron (2004). For the consumption response,
see, for example, Cochrane (1991), Flavin (1981), Townsend (1995), and Blundell, Pistaferri, and Preston
(2008).
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risk-taking.2

In this paper, we formalize the above intuition using a tractable endogenous growth

model with incomplete markets. In our framework, households have the opportunity to

invest in physical capital and human capital. While investment in physical capital is

risk-free, human capital is subject to idiosyncratic depreciation shocks that are unin-

surable and directly translate into permanent earning shocks. The government provides

public services that are independent of idiosyncratic human capital shocks, has access

to a linear system of taxes and subsidies, and runs a balanced budget. For given gov-

ernment policy, our model is tractable in the sense that the equilibrium allocation can

be characterized and computed without solving for the underlying wealth distribution.

Using this tractability result, we characterize the optimal government policy and show

theoretically the optimality of a human capital subsidy.

For the quantitative analysis, we calibrate the model to match a number of stylized facts

for the US economy. We find that in the baseline model with fixed labor-leisure choice,

the optimal human capital subsidy is substantial, but switching from a zero-tax envi-

ronment3 to the optimal system generates only small growth and welfare gains because

of strong general equilibrium effects. More precisely, for given returns (partial equilib-

rium), an increase in human capital increases economic growth since human capital is

the high-risk, high-return investment opportunity. In general equilibrium, this positive

growth effect is dwarfed by a reduction in human capital returns since more human

capital reduces the marginal product of labor, and our quantitative analysis reveals that

the general equilibrium effect is quite strong. However, once we allow for an endoge-

nous labor-leisure choice, a corresponding increase in labor-time results in only small

changes in the marginal product of labor despite a large increase in human capital, and

the growth and welfare effects of switching to the optimal government policy therefore

become large.

This paper is related to the extensive literature on optimal income taxation analyzing

2From a different point of view, the presence of risk-free publicly provided consumption services
works like an insurance system since the government applies a transfer scheme that shifts resources from
risky private consumption to risk-free publicly provided consumption.

3In the optimal capital taxation literature that builds upon Chamley (1986) and ?, finds that in the
long-run, optimal tax rates on accumulable factors are zero. We use this result as benchmark of the
underlying quantitative analysis.
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the so-called Ramsey problem (Judd (1985) and Chamley (1986)).4 Most papers in

this literature assume a representative household, but Aiyagari (1995), Davila, Hong,

Krusell, and Rios-Rull (2005), Conesa, Kitao, and Krueger (2009), and Imrohoroglu

(1998), have also considered the effect of uninsurable idiosyncratic risk and / or binding

borrowing constraints. However, none of these papers allows for a risky investment

opportunity. Recently, Panousi (2007) has analyzed optimal income taxation in a model

with entrepreneurial risk, but she does not consider the endogenous choice of government

spending. To the best of our knowledge, this is the first paper to study optimal taxation

and government spending in an economy with idiosyncratic investment risk.5

There is also a theoretical literature that uses two-period models to study the welfare

effects of income taxation when human capital investment is risky. In particular, Eaton

and Rosen (1980) argue that linear labor income taxes may reduce human capital invest-

ment risk, so that it becomes optimal to tax labor income and simultaneously subsidize

human capital investment to compensate for the des-incentive effect of the labor income

tax. Clearly, in this paper we emphasize a very different economic mechanism.

The rest of this paper is organized as follows. Section 2 presents the economic envi-

ronment and constructs a competitive equilibrium of the model economy. In section 3,

we derive the main theoretical results for the baseline model, and in section 4, we use

calibrated versions of the model economy for a quantitative analysis of the benchmark

model as well as further specifications. Finally, section 5 concludes.

2 The Model

This section develops the model that underlies the theoretical and quantitative analysis

conducted in the subsequent sections. As in Krebs (2003), there is a competitive pro-

duction sector using a production function that displays constant returns to scale with

respect to the two input factors, physical capital and efficient labor. Households are

ex-ante identical, infinitely-lived and have the opportunity to invest in physical and hu-

4There is also an important strand of the literature analyzing optimal taxation in asymmetric-
information economies (Mirrlees (2005) and Golosov, Kocherlakota, and Tsyvinski (2003); for a recent
review, see Kocherlakota (2005)).

5Acemoglu and Zilibotti (1997) also consider a setting in which it is socially optimal to encourage
risk taking, but their argument is very different from ours.
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man capital. Investment in physical capital is risk-free, but investment in human capital

is subject to idiosyncratic depreciation shocks. The government provides consumption

services that enter directly the households’ utility function, and levies linear taxes on

capital, labor and consumption in order to satisfy a balanced budget constraint.

2.1 The Economy

Consider a discrete-time, infinite-horizon economy with one non-perishable good that

can be either consumed or invested. Competition on the input factor markets and the

neoclassical production technology allows the representation of the production sector by

an aggregate firm that takes factor prices as given. The aggregate firm uses physical

capital Kt and efficiency units of labor LtHt to produce the all-purpose good. The

production technology is given by Yt = F (Kt, LtHt), where Lt denotes hours worked, Ht

human capital and thus, LtHt denotes efficiency units of hours worked. The rental rate

of physical capital is rkt and the rental rate of efficiency units of hours worked is rht. In

each period, the firm hires capital and labor up to the point where current profits are

maximized. Hence, the firm solves the following static maximization problem:

max
Kt,LtHt

{F (Kt, LtHt)− rktKt − rhtLtHt} (1)

There are many ex-ante identical, infinitely-lived households with total mass of one.

Households have identical preferences over private consumption plans {ct}∞t=0, private

hours worked choices {lt}∞t=0 and the sequence of publicly provided consumption services

{Gt}∞t=0. For convenience, let lower-case letters denote individual-specific variables and

upper-case letters denote aggregate variables. The specification of the utility function

closely follows Barro (1990) and Guo and Lansing (1999). The one period utility function

is logarithmic, and with β denoting the time preference rate, expected lifetime utility is

given by

U({ct, lt, Gt}∞t=0) = E

[ ∞∑
t=0

βt(ln ct + νl ln(1− lt) + νg lnGt)

]
(2)

where νl and νg are utility parameters that measure how the household values labor and

publicly provided consumption services.
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Let kt and ht stand for the stock of physical and human capital owned by an individual

household, and xkt and xht denote the corresponding investment in physical and human

capital. The fraction φ of human capital investment is bought with foregone earnings,

whereas the fraction (1 − φ) is directly bought by spending wealth. Physical capital

investments are, as usual, completely bought with wealth. Capital and labor markets

are perfectly competitive and the government taxes (or subsidizes) capital and labor

income at the flat rate τkt and τht. In addition, the government can tax consumption at

rate τct. For convenience, we define τt = (τkt, τht, τct). The sequential budget constraint

reads

(1 + τct) ct + xkt + (1− φ) xht = (1− τkt) rkt kt + (1− τht)(lt rht ht − φ xht) (3)

kt+1 = (1− δk) kt + xkt, kt ≥ 0

ht+1 = (1− δh + ηt) ht + xht, ht ≥ 0

(k0, h0, η0) given.

with δk and δh denoting the average depreciation rate of physical capital and human

capital. The term ηt is a household-specific shock to human capital. We assume that

these idiosyncratic shocks are identically and independently distributed across house-

holds and across time.6 The random variable ηt represents uninsurable idiosyncratic

labor income risk. A negative human capital shock, ηt < 0, can occur when a worker

loses firm- or sector-specific human capital subsequent to job termination. In order to

preserve the tractability of the model, the budget constraint rules out extended periods

of unemployment because it assumes that wages are received in each period. Thus, the

emphasis is on earnings uncertainty, not employment uncertainty. A decline in health

provides a second example for a negative human capital shock. In this case, general

and specific human capital might be lost. Internal promotions and upward movement in

the labor market provide two examples of positive human capital shocks (ηt > 0). It is

natural to assume that human capital shocks can never lead to the total destruction of

the existing human capital stock, thus restricting the domain of the shock distribution

to ηt ∈ (−(1− δh),∞).
6The budget constraint (3) makes two implicit assumptions about the accumulation of human capital.

First, it lumps together general human capital (education and health) and specific human capital (on-
the-job training). Second, (3) does not impose a non-negativity constraint on human capital investment
(xht ≥ 0).
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Constraint (3) permits households to save and dissave at the going interest rate, but

does not allow for the negative financial wealth (kt ≥ 0 and ht ≥ 0). Thus, one might

conjecture that the equilibrium will change once households are allowed to accumulate

debt. However, this is not the case for the model analyzed here, because income shocks

are permanent and not transitory and as shown in Kuhn (2008), non-negativity con-

straints will never bind in such an environment. More precisely, the introduction of a

risk-free bond does not change the equilibrium allocation as long as the bond interest

rate, rbt, is given by rbt = rkt − δk.

For given initial state (k0, h0, η0) and given fiscal policy, {τt, Gt}∞t=0, an individual

household chooses a plan, {ct, kt+1, ht+1, lt}∞t=0, that maximizes his expected lifetime

utility (2) subject to the budget constraint (3). Clearly, in each period, the choice

(ct, kt+1, ht+1, lt) is a function of the history of idiosyncratic shocks, ηt = (η0, . . . , ηt).7

The budget constraint (3) can be rewritten in a way that shows that the households’

optimization problem is a standard portfolio choice problem. To see this, define total

wealth of an individual household as wt
.= kt+ht and the fraction of total wealth invested

in physical capital and human capital as θt
.= kt/wt and (1 − θt)

.= ht/wt, respectively.

Using this notation, the budget constraint simplifies to

wt+1 =
(1 + rt) wt − (1 + τct) ct

θt+1 + (1− φ τht) (1− θt+1)
(4)

wt ≥ 0, 0 ≤ θt ≤ 1

(k0, h0, η0) given.

with the total investment return defined as

rt
.= θt [(1− τkt) rkt + (1− δk)]

+ (1− θt) [(1− τht) lt rht + (1− δh + ηt) (1− φ τht)]− 1 (5)

Equation (5) defines the return to investment function rt = r(θt, lt, ηt; rkt, rht, τkt, τht).

Clearly, maximizing (2) with respect to {ct, kt+1, ht+1, lt}∞t=0 subject to the budget

constraint (3) is equivalent to maximizing (2) with respect to {ct, wt+1, lt, θt+1}∞t=0

7Note that the tax system τt may depend on t, but not on idiosyncratic shocks ηt. In this sense, the
tax system does not provide insurance against idiosyncratic human capitals shocks.
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subject to the budget constraint (4).

Finally, we assume that the government runs a balanced budget in each period which

rules out extended periods of government debt. Thus, the government budget constraint

reads

τht

(
rht E[lt(1− θt)wt]− φ E[(1− θt+1)wt+1 − (1− δh + ηt)(1− θt)wt]

)
+ τkt rkt E[θtwt] + τct E[ct] = Gt (6)

From now on, we restrict the government to provide publicly consumption services pro-

portional to the size of the economy. In particular, Gt = µt E[ct].8

2.2 Equilibrium

A competitive equilibrium of our model economy is defined as follows:

Definition 1 (Competitive Equilibrium).

For any given initial distribution (w0, θ0, l0), a competitive equilibrium is

1. A sequence of {Kt, LtHt}∞t=0 that solves the firm’s maximization problem (1) for

given factor prices {rkt, rht}∞t=0;

2. A sequence of {ct, wt+1, lt, θt+1}∞t=0 that solves the household’s optimization prob-

lem (2) subject to (4) for a given sequence of factor prices {rkt, rht}∞t=0, idiosyn-

cratic shocks {ηt}∞t=0 and fiscal policy {τt, µt}∞t=0, for all households;

3. A sequence of factor prices {rkt, rht}∞t=0 that is consistent with market clearing on

the input factor markets, Kt = E[θtwt] and LtHt = E[lt(1− θt)wt];

4. A sequence of fiscal policy {τt, µt}∞t=0 that satisfies the government’s balanced

budget constraint (6) for given factor prices {rkt, rht}∞t=0 and household policy

{ct, wt+1, lt, θt+1}∞t=0, for all households.

8Taking BEA-data from 1970 to 2009, the government-to-household consumption ratio decreased
from 29 percent in 1970 to 21 percent in 2000 and started to rise again to approximately 24 percent. In
the long-run a constant ratio seems to be a good approximation.
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Introduce the aggregate capital to labor ratio K̃t
.= Kt
LtHt

and the production function

in intensive form f(K̃t)
.= F (K̃t, 1). Using this notation, the first-order conditions

associated with the firm’s static profit maximization problem (1) are

rkt = f ′(K̃t)

rht = f(K̃t)− K̃t f
′(K̃t)

Thus, rkt = rk(K̃t), rht = rh(K̃t). Note, in equilibrium, any sequence of factor prices

is completely determined by a corresponding sequence of capital-to-labor ratios {K̃t}∞t=0.

For convenience, we write r(θt, lt, ηt; rk(K̃t), rh(K̃t), τkt, τht) = r(θt, lt, ηt; K̃t, τkt, τht).

We now discuss the households’ optimization problem. The first-order conditions with

respect to wt+1, θt+1 and lt read

θt+1 + (1− φ τht)(1− θt+1)
(1 + τct) ct

= βE

[
1 + r(θt+1, lt+1, ηt+1; K̃t+1, τk,t+1, τh,t+1)

(1 + τc,t+1) ct+1

]
(7)

νl
1− lt

= (1− θt)
(1− τht) rh(K̃t)

(1 + τct)
wt
ct

(8)

φ τht
(1 + τct) ct

= βE

[
r̂k(K̃t+1, τk,t+1)− r̂h(lt+1, ηt+1; K̃t+1, τh,t+1)

(1 + τc,t+1) ct+1

]
(9)

where

r̂kt(K̃t, τkt) = (1− τkt) rk(K̃t) + (1− δk)

r̂ht(lt, ηt; K̃t, τht) = (1− τht) lt rh(K̃t) + (1− δh + ηt) (1− φ τht)

denote the current returns to physical and human capital net of depreciation and taxes

/ subsidies. The consumption-saving Euler equation (7) requires that the utility cost of

saving one more unit of the all-purpose good must be equal to the expected discounted

utility gain. The intratemporal first-order-condition (8) equates the marginal utility

gain from leisure against the marginal benefit of working. Finally, the intertemporal

first-order-condition (9) states that in the optimum, households are indifferent between

investing one more unit into physical capital and one more unit into human capital.

Because of the assumption that idiosyncratic shocks are independently distributed over
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time, it suffices to take the unconditional expectation with respect to ηt+1.

Any plan {ct, wt+1, lt, θt+1}∞t=0 that is a solution to the first-order conditions (7), (8),

(9) and the budget constraint (4) and satisfies a corresponding transversality condition

is also a solution to the utility maximization problem. Direct calculation shows that the

consumption and saving policies

ct =
1− β
1 + τct

(1 + r(θt, lt, ηt; K̃t, τkt, τht)) wt (10)

wt+1 =
β

(θt+1 + (1− φ τht) (1− θt+1))
(1 + r(θt, lt, ηt; K̃t, τkt, τht)) wt (11)

satisfy the household’s budget constraint (4) and solve the consumption-saving Euler

equation. Plugging the consumption and saving policies in the first-order-conditions

with respect to hours worked (8), and solving for lt finally yields the policy function for

hours worked

lt =
1

(1 + (1− β) νl)

− νl (1− β)
θt ((1− τkt) rk(K̃t) + (1− δk)) + (1− θt) (1− δh + ηt) (1− φ τht)

(1− θt) (1− τht) rh(K̃t) (1 + (1− β) νl)
(12)

Note that (12) defines a function lt = l(θt, ηt; K̃t, τkt, τht). In particular, by the linearity

of lt in the idiosyncratic shock ηt, we find E[l(θt, ηt; K̃t, τkt, τht)] = l(θt, E[ηt]; K̃t, τkt, τht).

Using the policy functions (10), (11) and (12), the first-order condition with respect to

the portfolio share θt+1 simplifies to

φ τht
(θt+1 + (1− φ τht) (1− θt+1))

= E

[
r̂k(K̃t+1, τk,t+1)− r̂h(θt+1, ηt+1; K̃t+1, τk,t+1, τh,t+1)

1 + r(θt+1, ηt+1; K̃t+1, τk,t+1, τh,t+1)

]
(13)

Since the idiosyncratic shock ηt+1 integrates out, the portfolio choice θt+1 only depends

on aggregate variables. Therefore, each household chooses the same capital share in his

portfolio. The previously characterized plan {ct, wt+1, lt, θt+1}∞t=0 solves the set of the

households’ first-order conditions and it is straightforward to show that it also satisfies

the associated transversality condition and, thus, is a solution to the utility maximization
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of an individual household. We summarize this result in the following proposition:

Proposition 1 (Solution to the Household’s Optimization Problem).

Given the initial distribution over (w0, θ0, l0). For any given sequence of tax rates

{τct, τkt, τht}∞t=0 and for any given sequence of capital-to-labor ratios {K̃t}∞t=0, the so-

lution to the household’s optimization problem is characterized as follows:

1. The optimal consumption and saving policies are linear homogenous in current

wealth and explicitly given by (10) and (11);

2. The optimal labor-leisure choice is independent of the households’ wealth but de-

pends on the current portfolio and current realization of the idiosyncratic shock;

the policy function is explicitly given by (12);

3. The optimal portfolio choice is independent of the household’s wealth and realiza-

tion of the idiosyncratic shock; thus, every household chooses the same portfolio

and θt+1 is implicitly given as the solution to (13).

Having characterized the households’ decision problem, we now discuss the market

clearing condition. In equilibrium, the aggregate capital-to-labor ratio has to be con-

sistent with the investment choices of the households. By definition, kt = θtwt and

ht = (1 − θt)wt and since every agent chooses the same θt+1 for t ≥ 0, market clearing

is given by

K̃∗t =


E[θt wt]

E[l(θt, ηt; K̃∗t , τkt, τht) (1− θt) wt]
for t = 0

θt

l(θt, E[ηt]; K̃∗t , τkt, τht) (1− θt)
for t > 0

(14)

Since we allow for arbitrary initial distributions of wealth, portfolios and idiosyncratic

shocks, we cannot guarantee mutual independence of w0, θ0 and η0. However, for t > 0,

we know that θt and lt are independent of wealth, and, moreover, every household

chooses the same capital share in his portfolio. This allows us to simplify the market

clearing condition for t > 0 further, as we already did in (14). The equilibrium capital-

to-labor ratio K̃∗t is a fixed point to (14) for given portfolio choices and tax rates. The

equilibrium path of the capital-to-labor ratio, {K̃∗t }∞t=0, is completely determined by the

initial distribution over (w0, θ0, η0), the complete sequence of capital and labor income

10



taxes {τkt, τht}∞t=0 and by the corresponding sequence of capital shares {θt+1}∞t=0 that

solve the respective first-order condition of the household

φ τht
(θt+1 + (1− φ τht) (1− θt+1))

= E

[
r̂k(K̃∗t+1, τk,t+1)− r̂h(θt+1, ηt+1; K̃∗t+1, τk,t+1, τh,t+1)

1 + r(θt+1, ηt+1; K̃∗t+1, τk,t+1, τh,t+1)

]

More compactly, we write

IC(θt+1, K̃
∗
t+1, τht, τk,t+1, τh,t+1) = 0 (15)

Note that this condition already uses the optimal policy functions for consumption, sav-

ing and leisure and thus satisfies the respective first-order condition and the household’s

budget constraint, by construction. We denote the first-order condition mnemonically

by IC, since it will be the implementability for the social planner below.

Using the households’ plans as characterized in proposition 1 as well as the capital-

to-labor ratio that satisfies market clearing, K̃∗t , we find that the government budget

constraint is independent of the current size of the economy. Again, using a more

compact formulation, the government budget constraint reads

GC(θt, θt+1, K̃
∗
t , τt, µt) = 0 (16)

For any initial distribution over (w0, θ0, η0), and for any given sequence {θt+1, τkt, τht}∞t=0,

the government can freely choose a sequence of consumption taxes and publicly provided

consumption services {τct, µt}∞t=0 that balances its budget out without distorting the

equilibrium decisions of the firm and the households.

The following proposition summarizes our previous discussion and characterizes the set

of competitive equilibria.

Proposition 2 (Competitive General Equilibrium).

For any given initial distribution over (w0, θ0), the set of equilibria EQ is defined as

EQ =
{
{θt+1, τt, µt}∞t=0 | {θt+1, τt, µt}∞t=0 satisfies

{IC(θt+1, K̃
∗
t+1, τht, τk,t+1, τh,t+1)}∞t=0 and {GC(θt, θt+1, K̃

∗
t , τt, µt)}∞t=0

}
(17)
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In short, we can think of an equilibrium as a joint sequences {θt+1, τt, µt}∞t=0 that

satisfies the implementability constraint, (15), and the government’s budget constraint,

(16). Importantly, the equilibrium is independent of the actual wealth distribution.

3 Optimal Taxation: Theoretical Results

For the derivation of the theoretical results, we use a simplified version of our model,

which is specified in the following assumption:

Assumption 1.

1. There is no disutility of work, νl = 0, and households supply a fixed amount of

hours worked that we conveniently normalize to unity, lt = 1, ∀t.

2. Human capital is solely bought by spending the all-purpose good, φ = 0.

The second part of the assumption, φ = 0, implies that the implementability and the

government budget constraint simplify to

IC(θt+1, K̃
∗
t+1, τht, τk,t+1, τh,t+1) = IC(θt+1, K̃

∗
t+1, τk,t+1, τh,t+1)

GC(θt, θt+1, K̃
∗
t , τt, µt) = GC(θt, K̃∗t , τt, µt)

For any given sequence of capital and labor income tax rates, {τkt, τht}∞t=0, proposition

1 specifies the equilibrium plan of consumption and wealth chosen by individual house-

holds. The particular representation of the equilibrium plan allows us to characterize

the Pareto-optimal equilibrium in a simple and transparent manner. Using the house-

holds’ policy functions for a given fiscal policy {τt, µt}∞t=0, expected lifetime utility from

private consumption can be calculated as

E

[ ∞∑
t=0

βt ln ct

]

= E

[ ∞∑
t=0

βt ln

(
1− β
1 + τct

βt
t∏

n=0

(1 + r(θn, ηn; K̃∗n, τkn, τhn)) w0

)]

= h(w0)−
∞∑
t=0

βt

(
ln(1 + τct) +

t∑
n=0

E
[
ln(1 + r(θn, ηn; K̃∗n, τkn, τhn))

])
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where h(w0) is a function of the underlying model parameters and the initial wealth

distribution. The welfare effect of any fiscal policy {τt, µt}∞t=1 is independent of the

initial wealth and asset distribution (w0, θ0). Similarly, the portfolio choices {θt+1}∞t=0

are independent of (w0, θ0), as well. Thus, any Pareto-optimal equilibrium is preferred

by all types of households, (w0, θ0), over all alternative equilibria, such that the set

of Pareto-optimal equilibria is independent of the initial distribution over household

types. More precisely, any Pareto-optimal equilibrium is the solution to the following

constrained social planner problem9

max
{θt+1, τt, µt}∞t=0

V ({θt+1, τt, µt}∞t=0) (18)

subject to

{θt+1, τt, µt}∞t=0 ∈
{
{θt+1, τt, µt}∞t=0 | {θt+1, τt, µt}∞t=0 satisfies

{IC(θt+1, K̃
∗
t+1, τk,t+1, τh,t+1)}∞t=0 and {GC(θt, K̃∗t , τt, µt)}∞t=0

}
(19)

where the objective function in (18) is defined as

V ({θt+1, τt, µt}∞t=0) = (1 + νg)

(
h(w0)−

∞∑
t=0

βt ln(1 + τct)

)
+ νg

∞∑
t=0

βt lnµt

+
∞∑
t=0

βt
t∑

n=0

E
[
ln(1 + r(θn, ηn; K̃∗n, τkn, τhn))

]
+ νg

∞∑
t=0

βt
t∑

n=0

ln(1 + r(θn, E[ηn]; K̃∗n, τkn, τhn))

The constrained social planner problem can be transformed into an unconstrained social

planner problem as follows. Define

Tt = θt τkt rkt(K̃∗t ) + (1− θt) τht rht(K̃∗t )

which measures to what extend total investment is taxed (Tt > 0), respectively subsidized

9Here, we use the terminology of constrained and unconstrained problems in the pure mathematical
sense and do not associate them with the information structure in the economy, as it is often done in
the literature.
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(Tt < 0). Using the new notation, the government budget constraint (6) can be written

as

τct =
µt (1− β) (1 + r(θt, E[ηt]; K̃∗t , 0, 0)− Tt)− Tt

(1− β) (1 + r(θt, E[ηt]; K̃∗t , 0, 0)− Tt) + Tt
(20)

This defines a function τct = τc(θt, µt, Tt). For any choice (θt, µt, Tt), the government

budget constraint can be satisfied by choosing τct according to τc(θt, µt, Tt). Simi-

larly, direct calculation shows that for any choice of (θt, µt, Tt), the implementability

constraint (15) will hold if capital and labor income taxes are

τh,t+1 = −

(
E

[
rh(K̃∗t+1)

1 + r(θt+1, ηt+1; K̃∗t+1, 0, 0)− Tt+1

])−1

× E

[
θt+1 ((rk(K̃∗t+1)− δk)− (rh(K̃∗t+1)− δh + ηt+1))− Tt+1

1 + r(θt+1, ηt+1; K̃∗t+1, 0, 0)− Tt+1

]
(21)

τk,t+1 =
Tt+1 − (1− θt+1) rk(K̃∗t+1) τh,t+1

θt+1 rk(K̃∗t+1)
(22)

This defines functions τht = τh(θt, µt, Tt) and τkt = τk(θt, µt, Tt). The constrained

social planner problem (18) subject to (19) is equivalent to the unconstrained social

planner problem

max
{θt+1, µt, Tt}∞t=0

Ṽ ({θt+1, τt, µt}∞t=0) (23)

where

Ṽ ({θt+1, µt, Tt}∞t=0) = (1 + νg)

(
h(w0)−

∞∑
t=0

βt ln(1 + τc(θt, Tt, µt))

)

+ νg

∞∑
t=0

βt lnµt

+
∞∑
t=0

βt
t∑

n=0

E
[
ln(1 + r(θn, ηn; K̃∗n, 0, 0)− Tn)

]
+

+ νg

∞∑
t=0

βt
t∑

n=0

ln(1 + r(θn, E[ηn]; K̃∗n, 0, 0)− Tn)
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The discussion above is summarized in the following proposition:

Proposition 3 (Equivalence of Constrained and Unconstrained Planner Problem).

Any Pareto-optimal equilibrium allocation can be found by solving either the constrained

social planner problem, (18) subject to (19), or the unconstrained social planner problem,

(23).

Straightforward but tedious calculations reveal that the objective function in (23) is

strictly concave. Since there is a convex choice set, the social planner problem (23) has

at most one solution. In the appendix we show that the maximization problem has

indeed a solution. Thus, there is a unique solution to the social planner problem (23),

and therefore a unique Pareto-optimal equilibrium. As proofed in the appendix, the

solution to the social planner’s problem has the following properties:

Proposition 4 (Optimal Taxes and Public Services).

Let {θt, µt, Tt}∞t=0, respectively {θt, µt, τct, τkt, τht}∞t=0, be the solution to the social

planner problem. If ση > 0 and νg > 0, the solution to the social planner problem is

characterized by:

(i.) Optimality of a stationary fiscal policy

(θt, µt, Tt) = (θ, µ, T )

and in particular

(θt, µt, τct, τkt, τht) = (θ, µg, τc, τk, τh)

(ii.) Optimality level of government spending

µ = νg

(iii.) Optimality of subsidizing total investment

T < 0
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(iv.) Optimality of subsidizing human capital

τh < 0

Proof. The proof is deferred to the appendix.

4 Optimal Taxation: Quantitative Analysis

4.1 Calibration

For our quantitative analysis, we use three different specifications of our model economy.

We calibrate the models such that the stationary equilibrium is consistent with stylized

annual facts of the US economy. In order to preserve the comparability of our results,

we recalibrate the model for each specification. The specifications are as follows: First,

households do not value leisure, νl = 0, and we normalize their labor supply to unity, lit =

1. Furthermore, investment is solely bought by spending wealth, meaning φ = 0. This

is basically the model setup for which we derived the theoretical results in the previous

section. In the second specification, households value leisure, but there is still no human

capital investment through forgone earnings. Third, we impose the restriction that a

fraction φ = 0.25 of human capital investment is bought through foregone earnings.

This parameter value is consistent with the range of values found and applied by Trostel

(1993).

Because the main contribution of our paper is to provide an argument that the optimal

tax rates are distortionary to the portfolio decision of the households, we choose an

economic environment without distortionary taxes as benchmark to which we calibrate

the relevant model parameters.10 Thus, τk = τh = 0.

We now calibrate the preference parameters. Since we are not interested in the welfare

effect of changes in the public good provision, we assume that the government already

provides the optimal amount of public consumption services. The optimality condition

with respect to public service provision is νg = µ.11 Since µ = gt

E[ct]
, we simply set νg

10This non-distortative tax rate on accumulable assets is actually the optimal tax system derived in
a Chamley-Judd economy.

11Actually, in section 3, we have shown that this condition holds for the first model specification. How-
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to the average government consumption to private consumption ratio found in US time

series: νg = 0.255. In order to satisfy the government budget constraint, we moreover

get τc = 0.255.12 As noted previously, the first model specification sets νl = 0. For the

second and third model specification, we choose νl such that the average labor supply

in equilibrium amounts to one third of the households’ time endowment. For both

specifications, we find νl = 2.5568. Finally, the time preference rate is set such that the

equilibrium saving rate is 20 percent. For the first specification, we get β = 0.9247 while

specification two and three require β = 0.9250.

The depreciation rates are set to δk = δh = 0.06. For physical capital, this value lies

within the range suggested by the literature, e.g. Cooley and Prescott (1995). For

human capital, Browning, Hansen, and Heckman (1999) find annual depreciation rates

between 0 and 4 percent. Accounting for the infinite horizon structure in our model, we

have to add an additional depreciation of 2 percent to capture full depreciation of human

capital after 50 years of work life. Thus, δh = 0.06 is at the upper bound of reasonable

values suggested in the literature. For the i.i.d. depreciation shock to human capital, we

assume that η ∼ N(µ, σ, a, a) with a and a denoting the lower and upper truncation

point of the distribution. We set a = −0.75 and a = 0.75 which guarantees the minimum

requirement on the domain of the η-distribution, η > −(1 − δh) and E[η] = 0. Clearly,

η is a permanent human capital shock which translates into a permanent labor income

shock for the household. The evolution of the logarithm of labor income is governed by

log lnhi,t+1 = log ln(β [1 + r(θ, ηt; K̃∗, τk, τh) ht])

≈ log lnβ + log lnhit + r(θ, ηt; K̃∗, τk, τh)

= ω +
(1− θ) (1− φ τh)

1 + (1− β) νl
ηt

with some constant ω which contains all terms that do not include the idiosyncratic

human capital depreciation shock. The logarithm of labor income follows approximately

a random walk with drift, and the mean and the standard deviation of the permanent

component of the logarithm of labor income are µyh = 0 and σyh = (1−θ) (1−φ τh)
1+(1−β) νl

ση.

ever, it is straightforward to prove that this condition also extends to the more elaborated specifications
two and three.

12The government and private consumption time series includes years 1970 to 2009 and is taken from
the BEA NIPA tables.
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In the empirical literature, the random walk specification is often used to model the

permanent component of labor income risk. For example, Carroll and Samwick (1997)

find a standard deviation of 0.147 whereas Meghir and Pistaferri (2004) estimate a value

of 0.182. Storesletten, Telmer, and Yaron (2004) additionally condition labor income risk

on the business cycle and find that labor income risk varies between 0.12 and 0.21. We

calibrate ση such that in equilibrium, permanent labor income risk exhibits a standard

deviation of 0.15. This yields ση = 0.2532 in the first specification and ση = 0.3013 in

the second and third specification.

The aggregate production technology is Cobb-Douglas with intensive form representation

f(K̃) = zK̃α. We set α = 0.36 to match the capital share of income according to the

values suggested in the literature. The technology parameter z is chosen such that

in equilibrium, aggregate consumption grows at two percent per annum. For the first

specification, this yields z = 0.3184 and for the second and third specification, we get

z = 0.6386. The calibration values are given in table 1, and the associated equilibrium

allocations are provided in table 2.

4.2 Results

The optimal tax policy and its welfare and growth implications are given in table 2.

Welfare effects ∆W are computed according to Lucas (1987) in consumption equivalent

units. In the first model specification, the optimal capital and labor income tax rates

are 2.0 and −2.5 percent, respectively. Due to a very strong general equilibrium effect,

the possibility to encourage more risk taking is limited. Specifically, reducing the labor

income tax leads to a portfolio shift from physical to human capital. Consequently, the

equilibrium capital-to-labor ratio decreases thereby pushing the equilibrium interest rate

upwards and the equilibrium wage rate downwards and thus discourages human capital

investment. Taken together, the reduction of the tax rate on labor income induces a

decrease in the wage rate such that the effect of the tax policy on the net return to

human capital is almost offset. Clearly, following this line of argument, there is only a

small spread between the optimal tax rates leading to minor welfare gains of about 0.06

percent from implementing the optimal tax system. Of course, in a small open economy

where prices are exogenously fixed by the international financial market, the general

equilibrium effect would be absent leading to more substantial welfare effects. In this
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Table 1: Calibration

description (1) (2) (3) matches

α technology param-
eter

0.3600 0.3600 0.3600 capital share

δk, δh depreciation rates 0.0600 0.0600 0.0600

φ forgone earnings 0 0 0.2500

νg utility parameter 0.2550 0.2550 0.2550 government expenditure to

private consumption ratio

z technology param-
eter

0.3192 0.6442 0.6442 consumption growth rate 2%

β time preference
rate

0.9230 0.9231 0.9231 saving rate 20%

σ sd depreciation
shock

0.2602 0.3269 0.3269 labor income risk 0.15

νl utility parameter 0 2.4851 2.4851 labor supply E[li] = 1/3

sense, our framework establishes a lower bound of the welfare effects.

Adding an endogenous labor-leisure choice helps to break the strong general equilibrium

effect. Reducing the labor income tax rate encourages both, investment into human

capital and labor supply. Clearly, investing into human capital becomes more profitable

if the household simultaneously increases his labor supply. The opposite holds as well:

increasing labor supply makes investment into human capital more profitable. This

reinforcing effect helps to overrule the general equilibrium effect more easily and for the

calibrated model economy, the optimal labor income tax drops to −9.5 percent whereas

the optimal capital income tax rises to 5.4 percent. The established spread between both

tax rates of 14.9 percentage points leads to substantial welfare gains of 1.49 percent and

the annual growth rate rises by substantial 0.67 percentage points.

Imposing that 25 percent of human capital investment are payed by foregone earnings

leads to a stronger reduction of the optimal labor income tax compared to the previous
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result. This result is due to the fact that the fraction of labor income that is invested

through foregone earnings is exempted from the labor income tax. Thus, subsidizing

human capital needs to take into account that a fraction of the subsidy is basically not

payed out and therefore raises labor income by a lower amount as in specification two.

In other words, the government has to rise labor income subsidy beyond the previous

result in order to encourage sufficient risk taking. The spread between capital and labor

income tax increases to 17 percent, the welfare gain, however, is slightly lower as before

(because the policy is not as effective as previously). The same holds for the growth

effect.

Table 2: Results

benchmark (1) (2) (3a) (3b)

optimal allocation

θ 0.4127 (0.4124) 0.4024 0.3751 0.3781 0.3600

E[li] 1 (1/3) 1 0.3645 0.3657 0.3451

optimal policy

τk 0 0.0198 0.0540 0.0510 0.0695

τh 0 -0.0249 -0.0950 -0.1188 0.1024

τc 0.2550 0.2768 0.3702 0.3869 0.2704

σh 0 0 0 0 0.2465

welfare/ growth effects (in percent/ percentage points)

4W 0.06 1.49 1.39 1.91

4γ∗c 0.14 0.67 0.62 0.80

Finally, we allow the government to encourage human capital investment more directly

by subsidizing the investment into human capital. Clearly, the direct policy dominates

the indirect policy. It even happens, that it is now optimal to tax labor income in order to

subsidize investment into human capital. The net effect on human capital accumulation,

however, remains positive, as can be seen from the decrease in the equilibrium portfolio
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choice from 0.4124 to 0.3600. Thus, the government still wants to encourage more risk

taking by the private households. The optimal capital income tax and the optimal labor

income tax are 7.0 and 10.2 percent, respectively, and human capital investment is now

subsidized by 24.7 percent. Of course, giving the government one more instrument, it

cannot do worse. The welfare effect rises to substantial 1.9 percent while the annual

growth rate increases by substantial 0.8 percentage points.
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5 Conclusions

We have shown that first, there is a substantial amount of idiosyncratic risk and second,

governments provide a significant amount of non-wasteful consumption services, there is

too less investment into the risky asset, human capital,in the competitive equilibrium.

The social planner can thus implement a welfare improving tax policy that encourages

more risk taking (investment in human capital) by the households. However, there are

strong general equilibrium effects that may offset almost all benefits of subsidizing the

risky asset, leading to very small welfare and growth effects of the optimal policy. In our

model with human capital as the risky asset, introducing an endogenous labor leisure

choice substantially breaks the strong general equilibrium effect.
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Appendix: Proof of Proposition 4

For convenience, we rewrite

rt = θt [(1− τkt) rkt − δk] + (1− θt) [(1− τht) lt rht − δh + ηt]

= θt [rkt − δk] + (1− θt) [lt rht − δh]− θt τkt rkt − (1− θt) τht rht + (1− θt) ηt

=
{
θt [rkt − δk] + (1− θt) [lt rht − δh + ηt]

}
− Tt + (1− θt) ηt

and define the term in curly brackets as r̄(θt, ·). Thus,

rt = r̄(θt, ·)− Tt + (1− θt) ηt

With this notation, we now proceed with the proof of the proposition.

Step 1: the social planner’s first-order condition

The first order conditions of the social planner problem read

∂Ṽ ({θt, µt, Tt}∞t=0)
∂µt

= −1 + νg
1 + µt

+
νg
µt

= 0 (24)

∂Ṽ ({θt, µt, Tt}∞t=0)
∂Tt

= E
[

1
1 + r̄(θt, ·)− Tt + (1− θt)ηt

]
− (1 + νg) (1− β) β

(1− β)(1 + r̄(θt, ·)− Tt) + Tt
− (1− β − νgβ)

1 + r̄(θt, ·)− Tt
= 0 (25)

∂Ṽ ({θt, µt, Tt}∞t=0)
∂θt+1

= E
[

(rk(θt+1)− δk)− (rh(θt+1)− δh + ηt+1)
1 + r̄(θt+1, ·)− Tt+1 + (1− θt+1)ηt+1

]
+

(1 + νg) (1− β) (1− β) ((rk(θt+1)− δk)− (rh(θt+1)− δh))
(1− β)(1 + r̄(θt+1, ·)− Tt+1) + Tt+1

− (1− β − νgβ)(rk(θt+1)− δk)− (rh(θt+1)− δh)
1 + r̄(θt+1, ·)− Tt+1

= 0 (26)

Step 2: proof of part (i.) and (ii.)

Updating equation (25) and combining it with equation (26) reveals, that the allocation

(θt+1, Tt+1) only depends on period t+ 1 variables and thus, (θt+1, Tt+1) = (θ, T ), ∀t.
Moreover, condition (24) immediately yields µt = νg, ∀t. Taken together, this proofs part

(i.) of the proposition, (θt, Tt) = (θ, T ) and (θt, µt, τct, τkt, τht) = (θ, µg, τc, τk, τh),

respectively, and part (ii.) of the proposition, µt = νg.
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Step 3: proof of part (iii.)

Updating (25) and combining it with (26) yields

E
[

η

1 + r̄(θ, ·)− T + (1− θ)η

]
= (1 + νg)(1− β)

(rk(θ)− δk)− (rh(θ)− δh)
(1− β)(1 + r̄(θ, ·)− T ) + T

(27)

where we dropped the time indices for convenience. It is easier to work with (27) instead

of (26). For simplicity, define

ΩT (θ, T ) = E
[

1
1 + r(θ, ·)− T + (1− θ)η

]
− (1 + νg) (1− β) β

(1− β)(1 + r̄(θ, ·)− T ) + T
− 1− β − νgβ

1 + r̄(θ, ·)− T
(28)

Ωθ(θ, T ) = E
[

η

1 + r̄(θ, ·)− T + (1− θ)η

]
− (1 + νg)(1− β)

(rk(θ)− δk)− (rh(θ)− δh)
(1− β)(1 + r̄(θ, ·)− T ) + T

(29)

We now have to show that there exists a (θ∗, T ∗) that solves ΩT (θ∗, T ∗) = 0 and

Ωθ(θ∗, T ∗) = 0.

First, we show that for any θ ∈ [0, 1], there exists a T ∈ [T , 0] that solves equation (28).

Fix θ = θ̄ and T = −1−β
β (1 + r̄(θ̄, ·)). Since r̄(θ̄, ·) is finite for any θ̄, the lower bound T

is well defined. We now apply the intermediate value theorem. On the one side, taking

the limit limT↘T ΩT (θ̄, T ), we find that the first and the third term are finite while the

second term goes to infinity. Thus, limT↘T ΩT (θ̄, T ) = −∞ < 0. On the other sides,

we evaluate ΩT (θ̄, T ) at t = 0 which yields

ΩT (θ̄, 0) = E
[

1
1 + r̄(θ̄) + (1− θ)η

]
− 1

1 + r̄(θ, ·)

Due to strict convexity of 1
1+r(θ̄)+(1−θ)η in η, Jensen’s inequality leads to

ΩT (θ̄, 0) ≥ 1
1 + r̄(θ, ·)

− 1
1 + r̄(θ, ·)

= 0

Thus, ΩT (θ̄, 0) ≥ 0. Clearly, ΩT (θ̄, T ) is continuous on the domain of T . Applying the
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intermediate value theorem yields that for any θ ∈ [0, 1],∃ T ∈ [−1−β
β (1+max r̄(θ, ·)), 0]

that solves the first order condition with respect to T . Moreover, the map T = T (θ) is

continuous.

Next, we show that for the continuous map T = T (θ) defined previously, there exists

a solution θ that solves equation (27). By construction of T = T (θ), we know that

(1 − β)(1 + r̄(θ, ·) − T (θ)) + T (θ) > 0. In addition, using the natural restriction η ∈
[−(1− δh),∞] together with T (θ) < 0 ensures 1 + r̄(θ, ·)− T + (1− θ)η > 0. Thus, the

Inada conditions imply

lim
θ↗1

Ωθ(θ, T (θ)) = −∞

lim
θ↘0

Ωθ(θ, T (θ)) = +∞

Therefore, given T = T (θ), we know that there exists a θ ∈ [0, 1] that solves (27),

establishing the existence of an equilibrium (θ∗, T ∗) with T < 0.

Finally, by the Principle of Optimality we can establish uniqueness of the equilibrium

straightforwardly.

Step 4: proof of part (iv.)

We now show that it is always optimal to subsidize the risky asset, τh < 0. Strict

concavity of η
1+r̄(θ∗, ·)−T ∗+(1−θ∗)η in η and Jensen’s inequality imply

E
[

η

1 + r̄(θ∗, ·)− T ∗ + (1− θ∗)η

]
<

E[η]
1 + r̄(θ∗, ·)− T ∗ + (1− θ∗)E[η]

= 0

By the upper and lower bounds on T , we know that (1− β)(1 + r̄(θ∗, ·)−T ∗) +T ∗ > 0.

Hence, equation (27) implies (rk(θ∗)−δk)−(rh(θ∗)−δh) ≤ 0. Now, we focus on equation

(26): The second and third term can be rewritten as

((rk(θ∗)− δk)− (rh(θ∗)− δh))
ν(1− β)(1 + r̄(θ∗, ·))− (1− β − 2βν + ν)T ∗

((1− β)(1 + r̄(θ∗, ·)− T ∗) + T ∗)(1 + r̄(θ∗, ·)− T ∗)

Knowing that T ∗ ∈ [−1−β
β (1+ r̄(θ∗, ·)), 0], we can show that that ν(1−β) (1+ r̄(θ∗, ·))−

(1−β−2βν+ν)T ∗ > 0. Therefore, the complete expression is negative such that equation
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(26) implies

E
[

(rk(θ∗)− δk)− (rh(θ∗)− δh + η)
1 + r̄(θ∗, ·)− T ∗ + (1− θ∗)η

]
> 0 (30)

The optimal income tax rates (τk, τh) provide the incentive such that in competitive

equilibrium, it is optimal for each household to choose θ∗. Hence

0 = E
[

((1− τk)rk(θ∗)− δk)− ((1− τh)rh(θ∗)− δh + η)
1 + r̄(θ∗, ·)− T ∗ + (1− θ∗)η

]
= E

[
(rk(θ∗)− δk)− (rh(θ∗)− δh + η) + (τhrh(θ∗)− T ∗)1

θ

1 + r̄(θ∗, ·)− T ∗ + (1− θ∗)η

]

Solving for τh yields

τh = −
E
[
θ∗((rk(θ∗)−δk)−(rh(θ∗)−δh+η))−T ∗

1+r̄(θ∗, ·)−T ∗+(1−θ∗)η

]
E
[

rh(θ∗)
1+r̄(θ∗, ·)−T ∗+(1−θ∗)η

]
By (30) and T ∗ < 0, we conclude that the numerator is positive. Multiplying with (-1)

and dividing by a positive number, we arrive at τh < 0, which finally proofs part (iv.)

of the proposition.
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